
Release 0.1    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

DAYLockFile

Inherits From: Object
Declared In: daymisckit/DAYLockFile.h
Protocols: NXTransport

Class Description
The DAYLockFile class implements a simple UNIX-based file locking mechanism.    Simply, if a
specific file (the lock file) exists, then the file it protects is considered locked.    In this case, no
other process is supposed to attempt to use the protected file.    The lock file should contain the
PID of the process holding the lock, if it exists.    This way, if a process dies unexpectedly without
removing a lock, a user with appropriate privileges may manually remove the lock after first
making sure that the process is in fact dead.
To use a DAYLockFile in your program, simply create it using the standard ±alloc and ±init
methods and then set the name of the lock file via the ±setFileName: method.    Use the full path
unless you want the lock file in the current working directory.    Note that ±setFileName: requires

an object which responds to the ±stringValue method, such as DAYString or an AppKit control, as
its argument.    Send a ±lock message when you wish to obtain a lock and a ±unlock message
when you are ready to relinquish the lock.    If either message fails, nil will be returned.    The
±haveLock message returns YES if you currently have the lock.
If you make a copy of a DAYLockFile which has a lock, the copy will not have the lock since only
one object should be able to hold the lock at a time.    Note that if you archive a DAYLockFile to a
stream, the archived version does not have the lock, even if it did when it was archived.    Thus you
must still send an ±unlock message before exiting the process.    (In other words, you can't have a
lock that persists between processes.)    A DAYLockFile sent bycopy through the distributed objects
system does not hold a lock, either.    This prevents the case where multiple objects believe that
they hold a lock.    Note that the ±free method will remove a lock (if still held) before freeing the
DAYLockFile.
If you fork child processes, you should be sure that the children and not the parent create the
DAYLockFile objects.    This is because each child should have an independent lock; if you create
the lock and then send it a ±lock message before forking, each child will think it has the lock,
which should never be the case and could cause the sorts of problems that the DAYLockFile is
designed to avoid.
Typically, a DAYLockFile should be used whenever more than one process might attempt to write to
a file.    In order to maintain the lock's integrity, a UNIX call is made which will atomically check for
existence of a file and create it if it doesn't already exist.    Be forewarned, however, that this type
of lock can only be enforced by ªconsent.º    If a process blindly accesses a file without first
checking the lock (and aborting if it can't get the lock), then the entire locking mechanism
becomes worthless.    Thus, if you intend to use a DAYLockFile to protect another file, you must
insure that every process which will access that file also protects it with a DAYLockFile (of the same
name, of course).    Also, as noted above, the DAYLockFile itself tries to make sure that only one
object can actually hold a lock at a given time, and in most cases will be successful, but this can
always be intentionally overridden, lending it useless.    It is up to you to be sure that it is used
appropriately.    Due to the fact that the file system does not enforce these types of locks natively,

carelessness will render them utterly useless.

Instance Variables
BOOL haveLock;
id lockFileName;

haveLock YES is we currently own/have the lock.
lockFileName The name of the file we are using as a lock.

Method Types

Initializing a DAYLockFile ± init
± copy
± free

Changing parameters ± setFileName:
Changing status ± lock

± unlock
Getting information about ± fileName

± haveLock
Saving to a file ± read:

± write:

Instance Methods

copy
- copy

Makes a copy of a DAYLockFile.    This method returns a DAYLockFile which holds no locks.

fileName
- fileName

Returns a DAYString which contains the file used as a lock file.

free
- free

Frees an instance of DAYLockFile, releasing any locks held by the object if necessary.

haveLock
- (BOOL)haveLock

Returns a YES if the DAYLockFile object currently holds the lock file and NO otherwise.
See also:    -lock, -unlock

init
- init

Initializes a new instance of DAYLockFile.

lock
- lock

Attempts to obtain the lock file.    Returns self if successful and nil if not.
See also:    -unlock

read:
- read:(NXTypedStream *)stream

Reads an archive DAYLockFile from a stream.    Note that an unarchived DAYLockFile never holds a
lock until you request it to obtain the lock using ±lock.
See also:    -write:

setFileName:
- setFileName:aString

Sets the name of the lock file.    You should give a full path to the file; if you do not, then the file will
be relative to the current working directory of the application.

unlock
- unlock

Attempts to release the lock file.    Returns self if successful and nil if not.
See also:    -lock

write:
- write:(NXTypedStream *)stream

Archives the DAYLockFile to a stream.    Remember that since only one object can hold the lock at a
time, the copy written to the stream is considered to not hold the lock.
See also:    -read:

